Upper Bounds for the Davenport Constant

نویسندگان

  • R. Balasubramanian
  • Gautami Bhowmik
چکیده

We prove that for all but a certain number of abelian groups of order n the Davenport constant is at most nk + k − 1 for positive integers k ≤ 7. For groups of rank three we improve on the existing bound involving the Alon-Dubiner constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 06 UPPER BOUNDS FOR THE DAVENPORT CONSTANT

We prove that for all but a certain number of abelian groups of order n the Davenport constant is atmost n k +k−1 for positive integers k ≤ 7. For groups of rank three we improve on the existing bound involving the Alon-Dubiner constant.

متن کامل

2 8 Fe b 20 06 UPPER BOUNDS FOR THE DAVENPORT CONSTANT

We prove that for all but a certain number of abelian groups of order n the Davenport constant is atmost n k +k−1 for positive integers k ≤ 7. For groups of rank three we improve on the existing bound involving the Alon-Dubiner constant.

متن کامل

F eb 2 00 6 UPPER BOUNDS FOR THE DAVENPORT CONSTANT

We prove that for all but a certain number of abelian groups of order n the Davenport constant is atmost n k +k−1 for positive integers k ≤ 7. For groups of rank three we improve on the existing bound involving the Alon-Dubiner constant.

متن کامل

The Large Davenport Constant Ii: General Upper Bounds

Let G be a finite group written multiplicatively. By a sequence over G, we mean a finite sequence of terms from G which is unordered, repetition of terms allowed, and we say that it is a product-one sequence if its terms can be ordered so that their product is the identity element of G. The small Davenport constant d(G) is the maximal integer ` such that there is a sequence over G of length ` w...

متن کامل

Tightish Bounds on Davenport-Schinzel Sequences

Let Ψs(n) be the extremal function of order-s Davenport-Schinzel sequences over an n-letter alphabet. Together with existing bounds due to Hart and Sharir (s = 3), Agarwal, Sharir, and Shor (s = 4, lower bounds on s ≥ 6), and Nivasch (upper bounds on even s), we give the following essentially tight bounds on Ψs(n) for all s: Ψs(n) =  n s = 1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007